Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
active(f(a, X, X)) → mark(f(X, b, b))
active(b) → mark(a)
active(f(X1, X2, X3)) → f(X1, active(X2), X3)
f(X1, mark(X2), X3) → mark(f(X1, X2, X3))
proper(f(X1, X2, X3)) → f(proper(X1), proper(X2), proper(X3))
proper(a) → ok(a)
proper(b) → ok(b)
f(ok(X1), ok(X2), ok(X3)) → ok(f(X1, X2, X3))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
active(f(a, X, X)) → mark(f(X, b, b))
active(b) → mark(a)
active(f(X1, X2, X3)) → f(X1, active(X2), X3)
f(X1, mark(X2), X3) → mark(f(X1, X2, X3))
proper(f(X1, X2, X3)) → f(proper(X1), proper(X2), proper(X3))
proper(a) → ok(a)
proper(b) → ok(b)
f(ok(X1), ok(X2), ok(X3)) → ok(f(X1, X2, X3))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Q is empty.
Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(f(a, X, X)) → F(X, b, b)
ACTIVE(f(X1, X2, X3)) → F(X1, active(X2), X3)
F(ok(X1), ok(X2), ok(X3)) → F(X1, X2, X3)
TOP(mark(X)) → PROPER(X)
F(X1, mark(X2), X3) → F(X1, X2, X3)
TOP(ok(X)) → ACTIVE(X)
PROPER(f(X1, X2, X3)) → PROPER(X1)
PROPER(f(X1, X2, X3)) → PROPER(X2)
PROPER(f(X1, X2, X3)) → PROPER(X3)
TOP(mark(X)) → TOP(proper(X))
ACTIVE(f(X1, X2, X3)) → ACTIVE(X2)
PROPER(f(X1, X2, X3)) → F(proper(X1), proper(X2), proper(X3))
TOP(ok(X)) → TOP(active(X))
The TRS R consists of the following rules:
active(f(a, X, X)) → mark(f(X, b, b))
active(b) → mark(a)
active(f(X1, X2, X3)) → f(X1, active(X2), X3)
f(X1, mark(X2), X3) → mark(f(X1, X2, X3))
proper(f(X1, X2, X3)) → f(proper(X1), proper(X2), proper(X3))
proper(a) → ok(a)
proper(b) → ok(b)
f(ok(X1), ok(X2), ok(X3)) → ok(f(X1, X2, X3))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(f(a, X, X)) → F(X, b, b)
ACTIVE(f(X1, X2, X3)) → F(X1, active(X2), X3)
F(ok(X1), ok(X2), ok(X3)) → F(X1, X2, X3)
TOP(mark(X)) → PROPER(X)
F(X1, mark(X2), X3) → F(X1, X2, X3)
TOP(ok(X)) → ACTIVE(X)
PROPER(f(X1, X2, X3)) → PROPER(X1)
PROPER(f(X1, X2, X3)) → PROPER(X2)
PROPER(f(X1, X2, X3)) → PROPER(X3)
TOP(mark(X)) → TOP(proper(X))
ACTIVE(f(X1, X2, X3)) → ACTIVE(X2)
PROPER(f(X1, X2, X3)) → F(proper(X1), proper(X2), proper(X3))
TOP(ok(X)) → TOP(active(X))
The TRS R consists of the following rules:
active(f(a, X, X)) → mark(f(X, b, b))
active(b) → mark(a)
active(f(X1, X2, X3)) → f(X1, active(X2), X3)
f(X1, mark(X2), X3) → mark(f(X1, X2, X3))
proper(f(X1, X2, X3)) → f(proper(X1), proper(X2), proper(X3))
proper(a) → ok(a)
proper(b) → ok(b)
f(ok(X1), ok(X2), ok(X3)) → ok(f(X1, X2, X3))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 4 SCCs with 5 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
F(ok(X1), ok(X2), ok(X3)) → F(X1, X2, X3)
F(X1, mark(X2), X3) → F(X1, X2, X3)
The TRS R consists of the following rules:
active(f(a, X, X)) → mark(f(X, b, b))
active(b) → mark(a)
active(f(X1, X2, X3)) → f(X1, active(X2), X3)
f(X1, mark(X2), X3) → mark(f(X1, X2, X3))
proper(f(X1, X2, X3)) → f(proper(X1), proper(X2), proper(X3))
proper(a) → ok(a)
proper(b) → ok(b)
f(ok(X1), ok(X2), ok(X3)) → ok(f(X1, X2, X3))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
F(ok(X1), ok(X2), ok(X3)) → F(X1, X2, X3)
F(X1, mark(X2), X3) → F(X1, X2, X3)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- F(ok(X1), ok(X2), ok(X3)) → F(X1, X2, X3)
The graph contains the following edges 1 > 1, 2 > 2, 3 > 3
- F(X1, mark(X2), X3) → F(X1, X2, X3)
The graph contains the following edges 1 >= 1, 2 > 2, 3 >= 3
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
PROPER(f(X1, X2, X3)) → PROPER(X1)
PROPER(f(X1, X2, X3)) → PROPER(X2)
PROPER(f(X1, X2, X3)) → PROPER(X3)
The TRS R consists of the following rules:
active(f(a, X, X)) → mark(f(X, b, b))
active(b) → mark(a)
active(f(X1, X2, X3)) → f(X1, active(X2), X3)
f(X1, mark(X2), X3) → mark(f(X1, X2, X3))
proper(f(X1, X2, X3)) → f(proper(X1), proper(X2), proper(X3))
proper(a) → ok(a)
proper(b) → ok(b)
f(ok(X1), ok(X2), ok(X3)) → ok(f(X1, X2, X3))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
PROPER(f(X1, X2, X3)) → PROPER(X1)
PROPER(f(X1, X2, X3)) → PROPER(X2)
PROPER(f(X1, X2, X3)) → PROPER(X3)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- PROPER(f(X1, X2, X3)) → PROPER(X1)
The graph contains the following edges 1 > 1
- PROPER(f(X1, X2, X3)) → PROPER(X2)
The graph contains the following edges 1 > 1
- PROPER(f(X1, X2, X3)) → PROPER(X3)
The graph contains the following edges 1 > 1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(f(X1, X2, X3)) → ACTIVE(X2)
The TRS R consists of the following rules:
active(f(a, X, X)) → mark(f(X, b, b))
active(b) → mark(a)
active(f(X1, X2, X3)) → f(X1, active(X2), X3)
f(X1, mark(X2), X3) → mark(f(X1, X2, X3))
proper(f(X1, X2, X3)) → f(proper(X1), proper(X2), proper(X3))
proper(a) → ok(a)
proper(b) → ok(b)
f(ok(X1), ok(X2), ok(X3)) → ok(f(X1, X2, X3))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(f(X1, X2, X3)) → ACTIVE(X2)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- ACTIVE(f(X1, X2, X3)) → ACTIVE(X2)
The graph contains the following edges 1 > 1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
Q DP problem:
The TRS P consists of the following rules:
TOP(mark(X)) → TOP(proper(X))
TOP(ok(X)) → TOP(active(X))
The TRS R consists of the following rules:
active(f(a, X, X)) → mark(f(X, b, b))
active(b) → mark(a)
active(f(X1, X2, X3)) → f(X1, active(X2), X3)
f(X1, mark(X2), X3) → mark(f(X1, X2, X3))
proper(f(X1, X2, X3)) → f(proper(X1), proper(X2), proper(X3))
proper(a) → ok(a)
proper(b) → ok(b)
f(ok(X1), ok(X2), ok(X3)) → ok(f(X1, X2, X3))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
TOP(mark(X)) → TOP(proper(X))
TOP(ok(X)) → TOP(active(X))
The TRS R consists of the following rules:
proper(f(X1, X2, X3)) → f(proper(X1), proper(X2), proper(X3))
proper(a) → ok(a)
proper(b) → ok(b)
f(X1, mark(X2), X3) → mark(f(X1, X2, X3))
f(ok(X1), ok(X2), ok(X3)) → ok(f(X1, X2, X3))
active(f(a, X, X)) → mark(f(X, b, b))
active(b) → mark(a)
active(f(X1, X2, X3)) → f(X1, active(X2), X3)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule TOP(mark(X)) → TOP(proper(X)) at position [0] we obtained the following new rules:
TOP(mark(b)) → TOP(ok(b))
TOP(mark(f(x0, x1, x2))) → TOP(f(proper(x0), proper(x1), proper(x2)))
TOP(mark(a)) → TOP(ok(a))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
TOP(mark(f(x0, x1, x2))) → TOP(f(proper(x0), proper(x1), proper(x2)))
TOP(mark(b)) → TOP(ok(b))
TOP(mark(a)) → TOP(ok(a))
TOP(ok(X)) → TOP(active(X))
The TRS R consists of the following rules:
proper(f(X1, X2, X3)) → f(proper(X1), proper(X2), proper(X3))
proper(a) → ok(a)
proper(b) → ok(b)
f(X1, mark(X2), X3) → mark(f(X1, X2, X3))
f(ok(X1), ok(X2), ok(X3)) → ok(f(X1, X2, X3))
active(f(a, X, X)) → mark(f(X, b, b))
active(b) → mark(a)
active(f(X1, X2, X3)) → f(X1, active(X2), X3)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
TOP(mark(f(x0, x1, x2))) → TOP(f(proper(x0), proper(x1), proper(x2)))
TOP(mark(a)) → TOP(ok(a))
TOP(ok(X)) → TOP(active(X))
The TRS R consists of the following rules:
proper(f(X1, X2, X3)) → f(proper(X1), proper(X2), proper(X3))
proper(a) → ok(a)
proper(b) → ok(b)
f(X1, mark(X2), X3) → mark(f(X1, X2, X3))
f(ok(X1), ok(X2), ok(X3)) → ok(f(X1, X2, X3))
active(f(a, X, X)) → mark(f(X, b, b))
active(b) → mark(a)
active(f(X1, X2, X3)) → f(X1, active(X2), X3)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule TOP(ok(X)) → TOP(active(X)) at position [0] we obtained the following new rules:
TOP(ok(b)) → TOP(mark(a))
TOP(ok(f(x0, x1, x2))) → TOP(f(x0, active(x1), x2))
TOP(ok(f(a, x0, x0))) → TOP(mark(f(x0, b, b)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
TOP(ok(f(a, x0, x0))) → TOP(mark(f(x0, b, b)))
TOP(ok(f(x0, x1, x2))) → TOP(f(x0, active(x1), x2))
TOP(mark(f(x0, x1, x2))) → TOP(f(proper(x0), proper(x1), proper(x2)))
TOP(ok(b)) → TOP(mark(a))
TOP(mark(a)) → TOP(ok(a))
The TRS R consists of the following rules:
proper(f(X1, X2, X3)) → f(proper(X1), proper(X2), proper(X3))
proper(a) → ok(a)
proper(b) → ok(b)
f(X1, mark(X2), X3) → mark(f(X1, X2, X3))
f(ok(X1), ok(X2), ok(X3)) → ok(f(X1, X2, X3))
active(f(a, X, X)) → mark(f(X, b, b))
active(b) → mark(a)
active(f(X1, X2, X3)) → f(X1, active(X2), X3)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 2 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
TOP(ok(f(a, x0, x0))) → TOP(mark(f(x0, b, b)))
TOP(ok(f(x0, x1, x2))) → TOP(f(x0, active(x1), x2))
TOP(mark(f(x0, x1, x2))) → TOP(f(proper(x0), proper(x1), proper(x2)))
The TRS R consists of the following rules:
proper(f(X1, X2, X3)) → f(proper(X1), proper(X2), proper(X3))
proper(a) → ok(a)
proper(b) → ok(b)
f(X1, mark(X2), X3) → mark(f(X1, X2, X3))
f(ok(X1), ok(X2), ok(X3)) → ok(f(X1, X2, X3))
active(f(a, X, X)) → mark(f(X, b, b))
active(b) → mark(a)
active(f(X1, X2, X3)) → f(X1, active(X2), X3)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
TOP(ok(f(a, x0, x0))) → TOP(mark(f(x0, b, b)))
The remaining pairs can at least be oriented weakly.
TOP(ok(f(x0, x1, x2))) → TOP(f(x0, active(x1), x2))
TOP(mark(f(x0, x1, x2))) → TOP(f(proper(x0), proper(x1), proper(x2)))
Used ordering: Polynomial interpretation with max and min functions [25]:
POL(TOP(x1)) = x1
POL(a) = 1
POL(active(x1)) = 0
POL(b) = 0
POL(f(x1, x2, x3)) = x1 + x3
POL(mark(x1)) = x1
POL(ok(x1)) = x1
POL(proper(x1)) = x1
The following usable rules [17] were oriented:
proper(b) → ok(b)
proper(a) → ok(a)
proper(f(X1, X2, X3)) → f(proper(X1), proper(X2), proper(X3))
f(ok(X1), ok(X2), ok(X3)) → ok(f(X1, X2, X3))
f(X1, mark(X2), X3) → mark(f(X1, X2, X3))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
TOP(ok(f(x0, x1, x2))) → TOP(f(x0, active(x1), x2))
TOP(mark(f(x0, x1, x2))) → TOP(f(proper(x0), proper(x1), proper(x2)))
The TRS R consists of the following rules:
proper(f(X1, X2, X3)) → f(proper(X1), proper(X2), proper(X3))
proper(a) → ok(a)
proper(b) → ok(b)
f(X1, mark(X2), X3) → mark(f(X1, X2, X3))
f(ok(X1), ok(X2), ok(X3)) → ok(f(X1, X2, X3))
active(f(a, X, X)) → mark(f(X, b, b))
active(b) → mark(a)
active(f(X1, X2, X3)) → f(X1, active(X2), X3)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
TOP(mark(f(x0, x1, x2))) → TOP(f(proper(x0), proper(x1), proper(x2)))
The remaining pairs can at least be oriented weakly.
TOP(ok(f(x0, x1, x2))) → TOP(f(x0, active(x1), x2))
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( f(x1, ..., x3) ) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
Tuple symbols:
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
proper(b) → ok(b)
proper(a) → ok(a)
proper(f(X1, X2, X3)) → f(proper(X1), proper(X2), proper(X3))
active(b) → mark(a)
active(f(a, X, X)) → mark(f(X, b, b))
f(ok(X1), ok(X2), ok(X3)) → ok(f(X1, X2, X3))
f(X1, mark(X2), X3) → mark(f(X1, X2, X3))
active(f(X1, X2, X3)) → f(X1, active(X2), X3)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ UsableRulesProof
Q DP problem:
The TRS P consists of the following rules:
TOP(ok(f(x0, x1, x2))) → TOP(f(x0, active(x1), x2))
The TRS R consists of the following rules:
proper(f(X1, X2, X3)) → f(proper(X1), proper(X2), proper(X3))
proper(a) → ok(a)
proper(b) → ok(b)
f(X1, mark(X2), X3) → mark(f(X1, X2, X3))
f(ok(X1), ok(X2), ok(X3)) → ok(f(X1, X2, X3))
active(f(a, X, X)) → mark(f(X, b, b))
active(b) → mark(a)
active(f(X1, X2, X3)) → f(X1, active(X2), X3)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ RuleRemovalProof
Q DP problem:
The TRS P consists of the following rules:
TOP(ok(f(x0, x1, x2))) → TOP(f(x0, active(x1), x2))
The TRS R consists of the following rules:
active(f(a, X, X)) → mark(f(X, b, b))
active(b) → mark(a)
active(f(X1, X2, X3)) → f(X1, active(X2), X3)
f(X1, mark(X2), X3) → mark(f(X1, X2, X3))
f(ok(X1), ok(X2), ok(X3)) → ok(f(X1, X2, X3))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
active(b) → mark(a)
f(ok(X1), ok(X2), ok(X3)) → ok(f(X1, X2, X3))
Used ordering: POLO with Polynomial interpretation [25]:
POL(TOP(x1)) = 2·x1
POL(a) = 1
POL(active(x1)) = 1 + x1
POL(b) = 1
POL(f(x1, x2, x3)) = x1 + x2 + x3
POL(mark(x1)) = x1
POL(ok(x1)) = 1 + x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
TOP(ok(f(x0, x1, x2))) → TOP(f(x0, active(x1), x2))
The TRS R consists of the following rules:
active(f(a, X, X)) → mark(f(X, b, b))
active(f(X1, X2, X3)) → f(X1, active(X2), X3)
f(X1, mark(X2), X3) → mark(f(X1, X2, X3))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 1 less node.